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Abstract. Mathematical Diagnostics (MD) deals with identification problems arising in
different practical areas. Some of these problems can be described by mathematical models
where it is required to identify points belonging to two or more sets of points. Most of the
existing tools provide some identification rule (a classifier) by means of which a given point
is assigned (attributed) to one of the given sets. Each classifier can be viewed as a virtual
expert. If there exist several classifiers (experts), the problem of evaluation of experts’ con-
clusions arises. In the paper for the case of supervised classification the method of virtual
experts (the VE-method) is described. Based on this method, a generalized VE method is
proposed where each of the classifiers can be chosen from a given family of classifiers. As a
result, a new optimization problem with a discontinuous functional is stated. Examples illus-
trating the proposed approach are provided.

Key words: classifier, data mining, identification, identification rule, mathematical diagnos-
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1. Introduction

Many problems of practical importance (such as, e.g., Data Mining prob-
lems, Classification and Identification problems, Pattern Recognition, Med-
ical and Engineering Diagnostics, Assignment and Allocation problems)
can be described by mathematical models where it is required to iden-
tify points belonging to two or more sets of points. Different approaches
and theories exist to treat the above problems: Machine Learning, Support
Vector Machines, Cluster Analysis, Neural Systems (see, e.g., Bennet and
Mangasarian, 1992; Mangasarian, 1994; Advances in Kernel Methods, 1999;
Cristianini and Shawe-Taylor, 2000; Vapnik, 2000; Lee and Mangasarian,
2001; Cucker and Smale, 2001; Bagirov et al., 2003 and references therein).

Most of the existing tools provide some identification rule (a classifier)
by means of which a given point is assigned (attributed) to one of the given
sets. These sets are assumed to be finite representative samplings of some
unknown sets.
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ies (RFFI) under Grant No 03-01-00668.
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There exist two main types of classification problems: supervised classifi-
cation problems and unsupervised ones. In the present paper only the first
class of problems is discussed (the case where one is able to evaluate the qual-
ity of a chosen classifier). The problem is to find a (possibly) simple rule to
identify points. The quality of a classifier is usually measured by some func-
tional (for example, by the amount of misclassified points). The problem of
finding such a classifier is often reduced to some optimization problem in
a multidimensional space (the problem of natural and surrogate function-
als and related optimization problems is discussed in Demyanov, 2005). This
multi-dimensional optimization problem is sometimes replaced by an opti-
mization problem in a lower-dimensional space by choosing a small num-
ber of most informative coordinates (parameters or features) or their linear
(or nonlinear) combinations. The problem of defining the most informative
coordinates is solved, e.g., by ranking coordinates. Low-dimensional (espe-
cially one- and two-dimensional) identification problems can successfully be
solved (an algorithm in the one-dimensional case is described in Section 6).
Solving identification problems for different subsets of coordinates (features)
one may get several classifiers for the same database. Each classifier can be
viewed as a virtual expert. The problem of evaluation of experts’ conclusions
is important in the decision making theory. This problem is discussed in the
present paper for the case of supervised classification. One may expect that
the usage of conclusions of several “experts” can produce a new identification
rule which is in one way or another better than the individual ones. In the
case of unsupervised classification different approaches (based on probabilis-
tic considerations) are often employed. They are not discussed here, as well
as very important problems related to training and testing sets, dependency
of parameters (features), multiple cross-validation procedures etc.

The paper is organized as follows. In Section 2 the problem of identi-
fication rules is stated. A new method (the method of virtual experts –
the VE-method) is discussed in Section 3. A generalized method of virtual
experts is outlined in Section 5. It is assumed that each classifier from the
given collection of classifiers can be chosen from the corresponding family of
classifiers. Therefore the problem of finding the best collection of classifiers
arises leading to a new optimization problem (which is discontinuous and
multiextremal). The notion of multi-dimensional classifier is introduced.
Two illustrative examples are presented in Section 4. An algorithm for the
one-dimensional identification problem (the 1D-identification problem) is
described in Section 6.

It is also worth noting that the classification problems (with the existing
databases) represent a perfect testing ground for different numerical meth-
ods as well as for different theories and approaches to solving identification
problems.
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2. Identification Rules

The identification problem can be formulated as follows. Assume that two
sets A⊂Rn and B ⊂Rn are given. These sets are assumed to be finite rep-
resentative samplings of some unknown sets A and B.

Let C = A ∪ B. It is required to find a rule (called an identification
rule(IR)) to identify points of C. Of course, one is interested to get as sim-
ple an IR as possible. Usually the identification is performed by means of
some functional (called a classifier) in the following way.

If f : Rn →R is a classifier and c ∈C is given then the point c is attrib-
uted to the set A if f (c)>0, and to the set B if f (c)<0. If f (c)=0 then,
by definition, the point c is considered as unidentifiable by the classifier f .

However, an identification rule may take a more complicated form (one
of them will be described in Section 3). If every c∈C can be correctly iden-
tified (well-classified) by a functional f , we say that the sets A and B are
perfectly classified by the functional f (by the classifier f ). It may happen
that some points of C are wrongly identified (misclassified) by the classifier
f . Denote by A+ ⊂A the set of points of A which are correctly identified
by the classifier f , i.e.

A+ ={c∈A | f (c)>0},
and by A− ⊂ A – the set of points of A which are wrongly identified by
the classifier f , i.e.

A− ={c∈A | f (c)�0}.
Analogously, let us denote by B+ ⊂B the set of points of B which are cor-
rectly identified by the classifier f , i.e.

B+ ={c∈B | f (c)<0},
and by B− ⊂B – the set of points of B which are wrongly identified by the
classifier f , i.e.

B− ={c∈B | f (c)�0}.
Note that A+ ∪A− =A, B+ ∪B− =B. The sets A+, A−, B+, B− depend
on f .

The quality of an identification rule (in our case the quality of a classifier)
is measured by the amount of misclassified points. For example, if A and
B are finite sets (i.e. each consisting of a finite number of points), then to
evaluate the quality of a classifier one can use one of the following criteria:

ϕ1(f )=|A−(f )|+ |B−(f )|, (1)
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ϕ2(f )= |A−(f )|
|A| + |B−(f )|

|B| , (2)

ϕ3(f )=max
{
|A−(f )|, |B−(f )|

}
, (3)

ϕ4(f )=max
{ |A−(f )|

|A| ,
|B−(f )|

|B|
}
. (4)

Here |A| is the car dinality of the set A (the number of points of A).
If F is a family of classifiers (or, in general, identification rules) and

ϕ(f ) is a chosen criterion then the identification problem can be formu-
lated as follows.

Find an f ∗ ∈F such that

ϕ(f ∗)=min
f ∈F

ϕ(f ). (5)

If A ∩ B = ∅ then, in principle, it is possible to construct a functional f

which performs a perfect identification (each c∈A∪B can be correctly iden-
tified). For example, if one takes

f (c)=
⎧⎨
⎩

1, c∈A,

−1, c∈B,

0, c /∈A∪B,

then the sets A and B are perfectly identified by f . However, this trivial
solution is not acceptable from practical considerations.

If A∩B �=∅ then a perfect identification is impossible, and the best pos-
sible classifier (or IR) is the one which allows to identify all points of the
set (A∪B)\ (A∩B).

The set A ∩B is the set of essentially unidentifiable (by the classifier f )
points.

The simplest case where each of the sets A and B contains a finite num-
ber of points in the one-dimensional space is discussed in Section 6. An
algorithm for finding the best linear classifier is described in subsection
6.2 (see also Demyanova, 2004). The idea of isolation (see Astorino and
Gaudioso, 2002) in the 1D-case is also easily implementable (see Petrova,
2004; Varis, 2004).

In subsection 6.3 it is shown how to use the one-dimensional identifica-
tion procedure for ranking the parameters. Having obtained the mentioned
ranking list, one is able to choose several most essential parameters (fea-
tures) for constructing an identification rule for the entire sets A and B
using the chosen features. Different approaches are used to find such an
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IR (see, e.g., Bennet and Mangasarian, 1992; Advances in Kernel Meth-
ods, 1999; Vapnik, 2000; Lee and Mangasarian, 2001; Kokorina, 2002a;
Kokorina, 2002b; Bagirov et al., 2003; Bagirov, 2005; Demyanov, 2005).

Another quite simple case is the two-dimensional one (where each of the
sets A and B contains a finite number of points in the two-dimensional
space). This case can easily be visualized, and a proper IR can be con-
structed.

In the subsequent section a new method is described which makes use of
several classifiers (usually obtained by solving some low-dimensional iden-
tification problems) for constructing a better identification rule.

Remark 1. In the discussion above it was assumed that identification
rules are of the deterministic nature. However, there are IRs where the clas-
sifier gives the answer in terms of probability: the probability that a point
c∈A∪B belongs to the set A is pA(c), and the probability that a point c

belongs to B is pB(c). In the sequel only deterministic identification rules
are used though the approach described can be extended to probabilistic
IRs as well.

Remark 2. The problem stated is a supervised classification problem since
in the process of constructing a classifier, one is able to check the quality of
the classifier. An unsupervised classification problem is to divide one given
set (which is the union of some unknown sets) into two or more sets with
similar features (and the problem is to define such a similarity) in the hope
that the sets thus constructed are close to the initial ones.

3. The Method of Virtual Experts

Consider in detail the case where each of the sets A and B contains a finite
number of points:

A={ai ∈Rn | i ∈ I }, B ={bj ∈Rn | j ∈J },

where I =1 :N1, J =1 :N2. Put

C =A∪B ={ck ∈Rn | i ∈K},

where K =1 :N, N =N1 +N2,

ck =
{

ak, k ∈1 :N1,

bk−N1, k ∈ (N1 +1) :N.

Assume that A∩B =∅ (the sets have no common points).
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Let f1, . . . , fm be given classifiers. Every classifier fs, s ∈ 1 : m, produces
the sets CsA and CsB such that CsA ⊂C, CsB ⊂C,

CsA={ck ∈ C | i ∈K, ck is assigned to A},
CsB={ck ∈ C | i ∈K, ck is assigned to B}.

Let us suppose that

CsA ∩CsB =∅, CsA ∪CsB =C

(i.e. it is assumed that every classifier assignes each point c ∈ C to one of
the sets A or B, uncertainty is excluded).

Denote

A+
s =A∩CsA, B+

s =B ∩CsB, A−
s =A∩CsB, B−

s =B ∩CsA.

The set A+
s is the subset of points of the set A which are correctly iden-

tified by the classifier fs (well-classified points of the set A), the set B+
s is

the subset of points of the set B which are correctly identified by the classi-
fier fs (well-classified points of the set B), the set A−

s is the subset of points
of the set A which are incorrectly identified by the classifier fs (misclassi-
fied points of A), the set B−

s is the subset of points of the set B which are
incorrectly identified by the classifier fs (misclassified points of B).

The classifier fs will be referred to as a virtual expert. We shall use the
information provided by the classifiers fs, s ∈1 :m, to construct a new clas-
sifier in the following way. For every point c∈C put

es(c)=
{

1, c∈CsA,

2, c∈CsB,

e(c)= (e1(c), e2(c), . . . , em(c)).
The vector e(c) can take 2m values (m-dimensional vectors whose coor-

dinates are equal to 1 or 2). By E denote the set of all possible values of
e(c). The set C will be divided into 2m subsets CE, E ∈E :

CE ={c∈C | e(c)=E}. (6)

Some of the subsets CE may be empty. Note that

CE1 ∩CE2 =∅ ∀E1 �=E2;
⋃{CE | E ∈E}=C.

For every E ∈E , let us construct the sets

AE =A∩CE, BE =B ∩CE. (7)
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We shall use the following identification rule for a point c∈CE:

if |AE|� |BE|, then c is assigned to the set A; (8)

if |AE|< |BE|, then c is assigned to the set B. (9)

Remind that |A| is the cardinality of A (the number of points of A).
The described identification rule can be written in the traditional form

(see the beginning of Section 2) by means of the following classifier f :

f (c)=
{

1, c∈CE, |AE|� |BE|,
−1, c∈CE, |AE|< |BE|.

Thus, the new classifier f divides the set C into several (not more than 2m)
subsets, and in every subset a new identification rule is valid. It is natural
to expect that the classifier thus constructed will be (in general) more infor-
mative and effective than the initial individual IRs.

The described procedure will be called the method of virtual experts (the
VE-method). This method has been tested on several specific databases and
proved to be quite effective. A detailed report on the results of its applica-
tion to widely used databases will be published elsewhere.

Let us illustrate the proposed method by several examples.

4. Illustrative Examples

4.1. example 1.

Let x = (x1, x2) ∈ R2, A = {ai ∈ R2 | i ∈ 1 : N1},B = {bj ∈ R2 | j ∈ 1 : N2},
where

N1 =7, a1 = (1,2), a2 = (2,2), a3 = (3,2),

a4 = (1,1), a5 = (2,1), a6 = (3,1), a7 = (−2,−1);
N2 =7, b1 = (−1,3), b2 = (−1,2), b3 = (−1,1),

b4 = (2,−1), b5 = (3,−1), b6 = (4,−1), b7 = (2,−2).

Put C = A ∪ B. Let the classifiers f1(x) = x1 and f2(x) = x2 be given with
the following identification rules: a point c = (c1, c2)∈C is assigned by the
classifier fs, s ∈1 : 2, to the set A if fs(c)>0, and to B – if fs(c)<0.

It is clear (see Figure 1 and Section 3) that

C1A ={a1 −a6, b4 −b6}, C1B ={b1 −b3, a7},
A+

1 =A∩C1A ={a1 −a6}, B+
1 =B ∩C1B ={b1 −b3},

A−
1 =A∩C1B ={a7}, B−

1 =B ∩C1A ={b4 −b7}.
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Figure 1.

We conclude that the points a7, b4 −b7 are misclassified by the classifier
f1 (altogether 5 misclassified points).

In this section we use the following notation: {a1 − a6, b4 − b6} means
{ai | i ∈1 : 6}∪ {bj | j ∈4 : 6}.

Analogously, we have

C2A ={a1 −a6, b1 −b3}, C2B ={b4 −b7, a7},
A+

2 =A∩C2A ={a1 −a6}, B+
2 =B ∩C2B ={b4 −b7},

A−
2 =A∩C2B ={a7}, B−

2 =B ∩C2A ={b1 −b3}.

Again, we conclude that the points a7, b1 −b3 are misclassified by the clas-
sifier f2 (altogether 4 misclassified points).

The set E contains 4 points: E ={E1,E2,E3,E4} where E1 = (1,1), E2 =
(1,2), E3 = (2,1), E4 = (2,2). We have (see (6))

CE1 ={c∈C | e(c)=E1}={a1 −a6}, CE2 ={c∈C | e(c)=E2}={b4 −b7},
CE3 ={c∈C | e(c)=E3}={b1 −b3}, CE4 ={c∈C | e(c)=E4}={a7}.

Now let us construct the sets (see (7)) AEs
=A∩CEs

, BEs
=B ∩CEs

:

AE1 =CE1 ={a1 −a6}, BE1 =∅, AE2 =∅, BE2 ={b4 −b7},
AE3 =∅, BE3 ={b1 −b3}, AE4 ={a7}, BE4 =∅.
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Therefore

|AE1 |=6, |BE1 |=0; |AE2 |=0, |BE2 |=4,

|AE3 |=0, |BE3 |=3, |AE4 |=1, |BE4 |=0.

According to (8)–(9), we have the following identification rule:

since |AE1 |− |BE1 |=6>0, then c∈CE1 is assigned to the set A;
since |AE2 |− |BE2 |=−4<0, then c∈CE2 is assigned to B;
since |AE3 |− |BE3 |=−3<0, then c∈CE3 is assigned to B;
since |AE4 |− |BE4 |=1>0, then c∈CE4 is assigned to A.

As a result of the identification, all points of the set C are correctly clas-
sified. Note that both “experts” f1 and f2 misclassified the point a7 assign-
ing it to the set B, nevertheless, the new identification rule classified this
point correctly. Of course, in general one can not expect such a perfect
classification, we presented this example just to demonstrate the potential
effectiveness of the VE-method.

Remark 3. Consider the following families of classifiers

F1={f (x)=x1 +α | α ∈R = (−∞,+∞)},
F2={f (x)=x2 +β | β ∈R = (−∞,+∞)}.

It is easy to check that for any functional ϕ(f ) described in (1)–(4), the
classifier f1(x)=x1 is a minimizer of the problem (see (5)):

ϕ(f1)= min
f ∈F1

ϕ(f )

(the minimum is attained at α = 0), and the classifier f2(x)= x2 is a mini-
mizer of the problem:

ϕ(f2)= min
f ∈F2

ϕ(f )

(the minimum is attained at β = 0). Note also, that the original classifiers
f1, . . . , fm are not supposed to be minimizers for some families of classifi-
ers (of course, if they are, it is better).
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Figure 2.

4.2. example 2.

Let x = (x1, x2) ∈ R2, A = {ai ∈ R2 | i ∈ 1 : N1},B = {bj ∈ R2 | j ∈ 1 : N2},
where N1 = 15, a1 = (2,6), a2 = (4,6), a3 = (6,6), a4 = (2,4), a5 =
(4,4), a6 = (6,4), a7 = (2,2), a8 = (4,2), a9 = (6,2), a10 = (−8,6), a11 =
(−6,4), a12 = (−4,2), a13 = (3,−2), a14 = (5,−4), a15 = (7,−6);N2 = 15,

b1 = (−6,−2), b2 = (−4,−2), b3 = (−2,−2), b4 = (−6,−4), b5 = (−4,−4),

b6 =(−2,−4), b7 =(−6,−6), b8 =(−4,−6), b9 =(−2,−6), b10 =(−5,6), b11

= (−3,4), b12 = (−1,2), b13 = (2,−3), b14 = (4,−5), b15 = (6,−7).

Put C = A ∪ B. Let the classifiers f1(x) = x1, f2 = x2 and f3(x) = x1 + x2

be given with the following identification rules: a point c = (c1, c2) ∈ C is
assigned by the classifier fs, s ∈1 : 3, to the set A if fs(c)>0, and to B – if
fs(c)<0.

It is clear (see Figure 2 and Section 3) that

C1A ={a1 −a9, a13 −a15, b13 −b15}, C1B ={b1 −b9, b10 −b12, a10 −a12},
A+

1 =A∩C1A ={a1 −a9, a13 −a15}, B+
1 =B ∩C1B ={b1 −b12},

A−
1 =A∩C1B ={a10 −a12}, B−

1 =B ∩C1A ={b13 −b15}.

We conclude that the points a10 − a12 and b13 − b15 are misclassified by
the classifier f1 (altogether 6 misclassified points).
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For the classifier f2 we have

C2A ={a1 −a12, b10 −b12}, C2B ={b1 −b9, b13 −b15, a13 −a15},
A+

2 =A∩C2A ={a1 −a12, }, B+
2 =B ∩C2B ={b1 −b9, b13 −b15},

A−
2 =A∩C2B ={a13 −a15}, B−

2 =B ∩C2A ={b10 −b12}.
We conclude that the points a13 −a15 and b10 −b12 are misclassified by the
classifier f2 (altogether 6 misclassified points).

Analogously, for the classifier f3 we have

C3A ={a1 −a9, a13 −a15, b10 −b12}, C3B ={b1 −b9, b13 −b15, a10 −a12},
A+

3 =A∩C3A ={a1 −a9, a13 −a15, }, B+
3 =B ∩C3B ={b1 −b9, b13 −b15},

A−
3 =A∩C3B ={a10 −a12}, B−

3 =B ∩C3A ={b10 −b12}.
We conclude that the points a10 −a12 and b10 −b12 are misclassified by the
classifier f3 (altogether 6 misclassified points). Thus, every of the three clas-
sifiers produces 6 misclassified points.

The set E contains 8 points: E ={Ei | i ∈1 : 8} where E1 = (1,1,1), E2 =
(1,1,2), E3 = (1,2,1), E4 = (1,2,2),E5 = (2,1,1), E6 = (2,1,2), E7 =
(2,2,1), E8 = (2,2,2). We have (see (6))

CE1 ={c∈C | e(c)=E1}={a1 −a9},
CE2 ={c∈C | e(c)=E2}=∅,

CE3 ={c∈C | e(c)=E3}={a13 −a15},
CE4 ={c∈C | e(c)=E4}={b13 −b15},
CE5 ={c∈C | e(c)=E5}={a1 −a9},
CE6 ={c∈C | e(c)=E6}={a10 −a12},
CE7 ={c∈C | e(c)=E7}=∅,

CE8 ={c∈C | e(c)=E8}={b1 −b9}.
Note that the sets CE2 and CE7 are empty (therefore they are not considered in the
sequel). Now let us construct the sets (see (7)) AEs

=A∩CEs
, BEs

=B∩CEs
:

AE1 =CE1 ={a1 −a9}, BE1 =∅, AE3 =CE3 ={a13 −a15},
BE3 =∅,AE4 =∅, BE4 =CE4 ={b13 −b15}, AE5 =∅,

BE5 =CE5 ={b10 −b12}, AE6 =CE6 ={a10 −a12},
BE6 =∅, AE8 =∅, BE8 =CE8 ={b1 −b9}.

Therefore

|AE1 |=9, |BE1 |=0; |AE3 |=3, |BE3 |=0; |AE4 |=0, |BE4 |=3;
|AE5 |=0, |BE5 |=3; |AE6 |=3, |BE6 |=0; |AE8 |=0, |BE8 |=9.
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According to (8)–(9), we have the following identification rule:

since |AE1 |− |BE1 |=9>0, then c∈CE1 is assigned to the set A;
since |AE3 |− |BE3 |=3>0, then c∈CE3 is assigned to A;
since |AE4 |− |BE4 |=−3<0, then c∈CE4 is assigned to B,

since |AE5 |− |BE5 |=−3<0, then c∈CE5 is assigned to the set B;
since |AE6 |− |BE6 |=3>0, then c∈CE6 is assigned to A;
since |AE8 |− |BE8 |=−9<0, then c∈CE8 is assigned to B.

As a result of the identification, all points of the set C are correctly clas-
sified. Of course, in general one can not expect such a perfect classification,
we presented this example again just to demonstrate the potential effective-
ness of the VE-method.

Remark 4. Consider the following families of classifiers

F1 ={f (x)=x1 +α | α ∈R = (−∞,+∞)},
F2 ={f (x)=x2 +β | β ∈R = (−∞,+∞)},
F3 ={f (x)=x1 +x2 +γ | γ ∈R = (−∞,+∞)}.

It is not difficult to check that for any functional ϕ(f ) described in (1)–(4),
the classifier f1(x)=x1 is a minimizer of the problem (see (5)):

ϕ(f1)= min
f ∈F1

ϕ(f )

(the minimum is attained at α = 0), the classifier f2(x)= x2 is a minimizer
of the problem:

ϕ(f2)= min
f ∈F2

ϕ(f )

(the minimum is attained at β = 0), and the classifier f3(x) = x1 + x2 is a
minimizer of the problem:

ϕ(f3)= min
f ∈F3

ϕ(f )

(the minimum is attained at γ =0).

Remark 5. If one takes only classifiers f1 and f2 for the sets A and B
described in Example 2, and performs all calculations as in Example 1, the
following identification rule will be obtained for a point c= (c1, c2)∈C:
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if c1 >0, c2 >0 then c is assigned to the set A;
if c1 >0, c2 <0 then c is assigned to the set A;
if c1 <0, c2 >0 then c is assigned to the set A;
if c1 <0, c2 <0 then c is assigned to the set B.

This new classifier produces 6 misclassified points – the same amount as
the one produced by every of the classifiers f1 and f2. However, if a point
c = (c1, c2) belogs to the first or the third quadrant of the plane (i.e., if
c1c2 >0) then the point c is correctly identified. In this respect the new clas-
sifier is more informative.

Remark 6. The VE-method is a supervised classification method. In the
case of unsupervised classification (when one is unable to check the quality
of an identification rule), if several IRs are available with some character-
ization of each classifier (e.g., it is known that the “expert” fs says that the
probability that a point c ∈A∪B belongs to the set A is psA(c), and the
probability that c belongs to B is psB(c)), then it is possible to derive a
new identification rule based on the probabilistic arguments.

5. A Generalized Method of Virtual Experts

Assume that we have several families of classifiers

F1 ={f1α1(x)=f1(x, α1) | α1 ∈�1 ⊂Rn1}, . . . ,

Fm ={fmαm
(x)=fm(x,αm) | αm ∈�m ⊂Rnm}.

Let

F ={(f1α1, . . . , fmαm
) | fiαi

∈Fi ∀i ∈1 :m}.
Any collection of m classifiers of the type F(α) = F(α1, . . . , αm) =
(f1α1, . . . , fmαm

)∈F (where (α)= (α1, . . . , αm)∈�= (�1 ×· · ·×�m)) will be
called an m-dimensional classifier. Using the VE-method (applied to the
collection of classifiers F(α)), one gets a new identification rule described
in Section 3 (see (8)–(9)).

Denote by A−(F (α))⊂A the set of points of A which are wrongly iden-
tified by the classifier F(α) and by B−(F (α))⊂B – the set of points of B
which are wrongly identified by the classifier F(α). Let us choose one of
the functionals ϕi(F (α)), i ∈1 : 4, described in (1)–(4). Denote it by ϕ(α).

Now it is possible to state the problem of finding a minimizer of the α∗

of the functional ϕ:

ϕ(α∗)=min
α∈�

ϕ(α). (10)
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To illustrate the idea, consider again Example 1 discussed in subsection 4.1.
Let two families of classifiers

F1 =
{
f1α1(x)=α11x1 +α12x2 +α13|α11 ∈R, α12 ∈R,

α13 ∈R, α2
11 +α2

12 =1
}

and

F2 =
{
f2α2(x)=α21x1 +α22x2 +α23|α21 ∈R, α22 ∈R, α23 ∈R,

α2
21 +α2

22 =1
}

be given with the following identification rules:
if f1(x, α1)∈F1 and f2(x, α2)∈F2 then a point c= (c1, c2)∈C is assigned

by the classifier fs, s ∈ 1 : 2, to the set A if fs(c, αs) > 0, and to B – if
fs(c, αs)<0.

Note that the families F1 and F2 coincide, i.e. we can choose a pair of
classifiers from the same family of classifiers. It follows from the results of
Example 1 that the point α∗ = (α∗

1 , α
∗
2) where α∗

1 = (1,0,0), α∗
2 = (0,1,0) is a

minimizer of the functional ϕ since ϕ(α∗)=0 (and the functional ϕ is nonneg-
ative). Observe also that the point α∗∗ = (α∗∗

1 , α∗∗
2 ) where α∗∗

1 = (0,1,0), α∗∗
2 =

(1,0,0) is also a minimizer of the functional ϕ since again ϕ(α∗∗)=0.

Remark 7. The functional ϕ(α) defined by (10) is discontinuous (it is also
multiextremal) therefore the stated problem is a difficult and challenging one
from both theoretical and practical points of view. Like in [8] (see Section
3 there), this discrete optimization problem can be approximated (to within
any given accuracy) by a continuous (though still multiextremal) one.

6. One-dimensional Identification by a Separation Technique

We use the following separation algorithm to identify points of two one-
dimensional finite sets of disjoint points. Let sets A⊂R and B ⊂R be given:

A={ai ∈R | i ∈ I }, B ={bj ∈R | j ∈J },

where I =1 :N1, J =1 :N2. Assume that ai and bj are ordered:

a1 <a2 < · · ·<aN1, b1 <b2 < · · ·<bN2

and that ai �=bj ∀i ∈ I, j ∈J (i.e. A∩B =∅).
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We shall use the following identification procedure: Assume that a func-
tion F(x, c) : R2 → R is given. The function F(x, c) will be referred to as
an identifier (or classifier). Take any c ∈ A ∪ B. If F(x, c) > 0, the point c

is identified as a point of the set A. If F(x, c)<0, the point c is identified
as a point of the set B. In the case F(x, c) = 0 the point c is considered
as unidentifiable by the identifier F(x, c). In what follows we consider the
case F(x, c)= c−x. (Sometimes we shall use the function F(x, c)=x − c.)

Let m1(x) = |A−| where A− = {ai ∈ A | ai � x},m2(x) = |B−| where B− =
{bj ∈B | bj �x}. Here |C| is the number of points in a set C. Thus, m1(x)

(m2(x)) represents the number of points of the set A (respectively, B) incor-
rectly identified (misclassified) by the identifier F(x, c). Now, as a perfor-
mance (criterion) function, let us take the function

m(x)=max{m1(x),m2(x)}. (11)

The problem is to find

min
x∈R

m(x)=m∗.

The functions m(x),m1(x),m2(x) take only integer values and are discon-
tinuous and piecewise constant. The set A is the set of discontinuity points
of the function m1 and the set B is the set of discontinuity points of the
function m2. The function m1(x) is nondecreasing and, hence, quasicon-
vex, while the function m1(x) is nonincreasing and also quasiconvex (see
Zabotin et al., 1972). The function m(x), as the maximum of quasicon-
vex functions, is also quasiconvex (see Zabotin et al., 1972). Of course,
one may choose another function as a criterion function. For example, the
function f1(x)=m1(x)+m2(x) is also interesting in this respect. However,
the set of (global) minimizers of the function m is convex and there exist
no local minimizers while the function f1 may have local minimizers which
are not global ones and even the set of global minimizers may happen to
be nonconvex.

6.1. necessary and sufficient optimality conditions

Let M∗ be the set of minimizers of the function m defined by (11). The
function m is quasiconvex, therefore M∗ is convex (see Zabotin et al.,
1972). Since we consider the one-dimensional case, M∗ has one of the
forms: M∗ = [p,q], M∗ = (p, q], M∗ = [p,q), M∗ = (p, q). The function m

is constant on R \A∪B, hence the points p and q belong to A∪B.
By m1(x

+) let us denote the value m1(z) for z ∈ (x, x ′) where x ′ is such
that (x, x ′) ∩ [A ∪ B] = ∅ (i.e., in the interval (x, x ′) there are no points of
the sets A and B). By m1(x

−) let us denote the value m1(z) for z∈ (x ′, x)
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where x ′ is such that (x ′, x) ∩ [A ∪ B] = ∅ (i.e., in the interval (x ′, x) there
are no points of the sets A and B).

The functions m2(x
+) and m2(x

−) are introduced in the same way.
Put

m(x+)=max{m1(x
+),m2(x

+)}, m(x−)=max{m1(x
−),m2(x

−)}.

Clearly,

m1(x
+)�m1(x), m2(x

+)�m2(x),

m1(x
−)�m1(x), m2(x

−)�m2(x).

If ai ∈A,bj ∈B then

m1(a
+
i )=m1(ai), m1(a

−
i )=m1(ai)−1,

m1(b
+
j )=m1(b

−
j )=m1(bj ), m2(a

+
i )=m2(a

−
i )=m2(ai),

m2(b
+
j )=m2(bj )−1, m2(b

−
j )=m2(bj ).

It is easy to see that

m(a−
i )�m(ai)=m(a+

i ), m(b+
j )�m(bj )=m(b−

j ).

Now let us show that M∗ is of the form M∗ = (p, q). Assuming the con-
trary, one has:

In the case p∈M∗: if p=bj ∈B then m1(b
−
j )=m1(bj ), m2(b

−
j )=m2(bj ),

and the interval M∗ can be enlarged (to the left); if p =ai ∈A then

m1(a
−
i )=m1(ai)−1, m2(a

−
i )=m2(ai),

and the interval M∗ can be enlarged (to the left).
In the case q ∈M∗: if p =bj ∈B then

m1(b
+
j )=m1(bj ), m2(b

+
j )=m2(bj )−1,

and the interval M∗ can be enlarged (to the right); if p =ai ∈A then

m1(a
+
i )=m1(ai), m2(a

+
i )=m2(ai),

and the interval M∗ can be enlarged (to the right).
Thus, M∗ = (p, q). Next, let us prove that p∈B,q ∈A. First we show that

p ∈B. Assume the contrary, let p =ai . Then

m1(ai)=m1(a
+
i ), m1(a

−
i )=m1(ai)−1=m1(a

+
i )−1,

m2(a
−
i )=m2(a

+
i )=m2(ai),
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and therefore m(a−
i )�m(a+

i ) (i.e., points close to ai from the left belong to
M∗). This is a contradiction, hence, p ∈B.

Now show that q ∈A. Assume the contrary, let q =bj . Then

m2(b
+
j )=m2(bj )−1=m2(b

−
j )−1, m1(b

+
j )=m1(b

−
j )=m1(bj ),

and therefore m(b+
j )�m(b−

j ) (i.e., points close to bj from the right belong
to M∗). This is a contradiction, hence, q ∈A.

Thus, we have proved that M∗ = (bj , ai). Now we shall demonstrate that
m2(b

+
j )=m1(a

−
i )=m∗. Indeed, assume, e.g., that m2(b

+
j )<m∗. Since

m2(b
−
j )=m2(bj )=m2(b

+
j )+1�m∗,

m1(b
−
j )=m1(b

+
j )�m∗,

i.e. m(b−
j ) � m∗, and since m(z) � m∗ ∀z, then m(b−

j ) = m∗. Thus, the set
M∗ can be enlarged (to the left) which is impossible.

Similarly, assuming that m1(a
−
i )<m∗, one gets

m1(a
+
i )=m1(a

−
i )+1�m∗, m2(a

+
i )=m2(a

−
i )�m∗,

i.e. m(a+
i ) � m∗, and since m(z) � m∗ ∀z, then m(a+

i ) = m∗. Thus, the set
M∗ can be enlarged (to the right) which is again impossible.

Hence, we have just proved the following

THEOREM 1. The set M∗ is of the form M∗ = (bj , ai) and, moreover,

m2(b
+
j )=m1(a

−
i )=m∗.

6.2. a numerical method for minimizing m(x)

Using the above Theorem, it is possible to describe the following numerical
procedure for finding the set M∗.

Choose M0 = (p0, q0) where

p0 �min
{

min
i∈I

ai, min
j∈J

bj

}
, q0 >max

{
max
i∈I

ai,max
j∈J

bj

}
.

Then

m(p0)=m2(p0)=N1, m(q0)=m1(q0)=N2, m1(p0)=m2(q0)=0.

Let Mk = (pk, qk) be found such that m1(pk) < m2(pk), m2(qk) < m1(qk).

Take ck = pk+qk

2 .
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If m1(ck) = m2(ck) then m(ck) = m∗ (i.e., ck is a minimizer since m2 is a
decreasing function and m1 is an increasing function). Now find a point
bjk

∈ B nearest to ck from the left and a point aik ∈ A nearest to ck from
the right. Then M∗ = (bjk

, aik ).
If m1(ck)<m2(ck) then put Mk+1 = (pk+1, qk+1) where pk+1 =ck, qk+1 =qk.

Note that

m1(pk+1)=m1(ck)<m2(ck)=m2(pk+1),

m2(qk+1)=m2(qk)<m1(qk)=m1(qk+1).

Finally, if m1(ck) > m2(ck) then put Mk+1 = (pk+1, qk+1) where pk+1 =
pk, qk+1 = ck. Note again that

m1(pk+1)=m1(pk)<m2(pk)=m2(pk+1),

m2(qk+1)=m2(ck)<m1(ck)=m1(qk+1).

Continuing in the same way, we construct a sequence of intervals {Mk}.
It is not difficult to show that the process terminates in a finite number of
steps producing the set M∗ we are looking for. The mentioned number of
steps does not exceed the value K where K is such that

q0 −p0

2K
<d = min

i∈I,j∈J
|ai −bj |.

6.3. the ranking of parameters via the 1d-identification

Let sets A⊂Rn and B ⊂Rn be given: A={ai ∈Rn | i ∈I }, B ={bj ∈Rn | j ∈
J }, where

I =1 :N1, J =1 :N2, ai = (ai1, . . . , ain), bj = (bj1, . . . , bjn).

For simplicity assume that N1 =N2 =N . For each coordinate k we have the
one-dimensional sets

Ak ={aik | i ∈ I }, Bk ={bjk | j ∈J }.

Applying the above algorithm, we perform the identification procedure for
the sets Ak and Bk and find the value m∗

k . The value µk = m∗
k

N
may be viewed

as the ratio of misclassified points of the sets Ak and Bk. Rearranging the
values µk’s in the increasing order, we can rank them according to their
informative values. The described ranking is not based on statistical con-
siderations (like the ranking procedure proposed in Kokorina, 2002a).
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Remark 8. We used the described ranking procedure to perform n-
dimensional identification by the separation technique. Many important
conclusions were obtained even in a very simple case n = 2. Note that
2 parameters with small informative values may have a high cumulative
(joint) informative value (see examples in Section 4).

Remark 9. The case N1 �= N2 can be treated in a similar way. The case
of “weighted” ai ’s and bj ’s is of practical value and can be handled by a
modified separation technique.
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